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ABSTRACT
In this paper, we consider the evolution of structure within large
online social networks. We present a series of measurements of
two such networks, together comprising in excess of five million
people and ten million friendship links, annotated with metadata
capturing the time of every event in the life of the network. Our
measurements expose a surprising segmentation of these networks
into three regions: singletons who do not participate in the network;
isolated communities which overwhelmingly display star structure;
and a giant component anchored by a well-connected core region
which persists even in the absence of stars.

We present a simple model of network growth which captures
these aspects of component structure. The model follows our ex-
perimental results, characterizing users as either passive members
of the network; inviters who encourage offline friends and acquain-
tances to migrate online; and linkers who fully participate in the
social evolution of the network.

Categories and Subject Descriptors: H.2.8 [Data Management]:
Database Applications—Data Mining

General Terms: Measurements, Theory

Keywords: graph mining, small-world phenomenon, graph evolu-
tion, social networks, stars

1. INTRODUCTION
In this paper, we study the evolution of large online social net-

works. To our knowledge, this is the first detailed evaluation of the
growth processes that control online social networks in the large.

The power of people interacting with people in an online setting
has driven the success or failure of many companies in the internet
space. Social media applications such as flickr (flickr.com)
or myspace (www.myspace.com) have exploded in popularity,
shocking pundits and realigning the online landscape. Similarly,
classically successful online destinations that deal largely in the
buying and selling of physical items owe much of their success to
the power of online networks; consider for instance the product
reviews of Amazon (amazon.com) or the reputation mechanism
of Ebay (ebay.com). In fact, social networks have become the
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subject of numerous startup companies in their own right, offering
each user the promise of managing her own social network as a
valuable resource to be shepherded and grown.

As the stock of social networks has grown, so too has interest in
the academic community. Offline networks have been the subject
of intense academic scrutiny for many decades, but the availability
of large online social networks has raised new sets of questions.
Much work to date has focused on the structure of a static snapshot
of an evolving social network. In this paper, we have access to the
entire lifetime of two large social networks, and hence we are able
to study their dynamic properties. We study the social network of
Flickr, and Yahoo! 360.

SUMMARY OF FINDINGS. We begin with a study of the overall
properties of the network. We show that the density of the network,
which measures the amount of interconnection per person, follows
the same unexpected pattern in both networks: rapid growth, de-
cline, and then slow but steady growth. We postulate based on the
timing of the events that the pattern is due to the activities of early
adopters who create significant linkages in their exploration of the
system, followed by a period of rapid growth in which new mem-
bers join more quickly than friendships can be established, settling
finally into a period of ongoing organic growth in which both mem-
bership and linkage increases.

Next, we classify members of a social network into one of three
groups: the singletons, the giant component, and the middle region,
as follows.
Singletons. The singletons are degree-zero nodes who have joined
the service but have never made a connection with another user in
the social network. They may viewed as loners who do not partici-
pate actively in the network.
Giant component. The giant component represents the large group
of people who are connected to one another through paths in the
social network. These people find themselves connected directly
or indirectly to a large fraction of the entire network, typically con-
taining most of the highly active and gregarious individuals.
Middle region. The middle region is the remainder. It consists of
various isolated communities, small groups who interact with one
another but not with the network at large. We will show that this
group may represent a significant fraction of the total population.

We begin with a detailed study of the middle region, which rep-
resent about 1/3 of the users of Flickr and about 10% of the users
of Yahoo! 360. We show first that over significant periods of time,
and significant fractions of growth in the network (exceeding 10x),
the fraction of users who exist in isolated communities of a particu-
lar size remains remarkably stable, even though the particular users
change dramatically.

We study the migration patterns of isolated communities, seek-
ing insight to how these communities grow and merge. Our find-
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ings are quite surprising. The likelihood that two isolated commu-
nities will merge together is unexpectedly low. Evolution in the
middle region is characterized by two processes: isolated commu-
nities grow by a single user at a time, and then may eventually be
merged into the giant component; these processes capture the ma-
jority of activity within the middle region. Furthermore, we present
a structural finding showing that almost all the isolated communi-
ties are in fact stars: a single charismatic individual (in the online
sense) linked to a varying number of other users who have very few
other connections.

We study the formation of these stars and show that they grow
rapidly, and then either merge into the giant component or cease
growth when the individual holding the community together loses
focus on growing the network.

Next, we turn to the structure of the giant component. We show
that, in this region, the merging of stars does not represent the defin-
ing structural characteristic of the giant component. Instead, merg-
ing stars represent a sort of outer layer of the region, around a much
more tightly-connected core of active members who are the heart
of the entire social network. Removal of all stars from the giant
component has no significant impact on the connectivity of the re-
maining nodes.

Over time, the average distance between users in the giant com-
ponent is seen to fall. This surprising result has been observed in
other settings [22]; we show it here for online social networks.

Given these findings, we draw some high-level behavioral con-
clusions about the structure and evolution of online social networks.
First, there are two distinct ways that people join the network: they
may register by actively seeking out the network, or they may be
invited by a friend or colleague. The stars in the middle region are
largely characterized by invitations, and the individuals perform-
ing the invitations are typically motivated more by migrating and
existing offline social network into an online setting, rather than
building new connections online. On the other hand, the members
of the well-connected core of the giant component are the reverse:
they are highly focused on the evolution of the internal network of
which they are perhaps the key piece.

MODEL. Based on these observations, we propose a rudimentary
model of network evolution in which we attempt to capture the
salient properties of our measurements using as small a parame-
ter space as possible. Our model uses a notion of biased prefer-
ential attachment which introduces a disparity between the relative
ease of finding potential online connections within the giant com-
ponent, and the relative difficulty of locating potential connections
out in the isolated communities. The model accurately reproduces
the quantitatively very different component structure of Flickr and
Yahoo! 360.

ORGANIZATION. The paper is organized as follows. In Section 2,
we discuss the related work on theoretical and experimental anal-
ysis of large-scale social and other related networks. In Section 3,
we describe our experiments and observations about the Flickr and
Yahoo! 360 social networks. In Section 4, we outline the biased
preferential attachment model for online social network evolution.
In Section 5, we discuss our findings and outline thoughts for future
work. Finally, Section 6 concludes the paper.

2. RELATED WORK
Large real-world graphs such as the world-wide web, internet

topology, phone call graphs, social networks, email graphs, biolog-
ical networks, and linguistic networks have been extensively stud-
ied from a structural point of view. Typically, these studies address
properties of the graph including its size, density, degree distribu-

tions, average distance, small-world phenomenon, clustering co-
efficient, connected components, community structures, etc. We
briefly outline some of the work in this area. Faloutsos, Faloutsos,
and Faloutsos [13] made a crucial observation showing that the de-
gree distribution on the internet follow a power law. Subsequently,
an intense body of work followed in both computer science and
physics communities, aimed at studying properties of large-scale
real-world graphs. Power law degree distributions were also noted
on the graph defined by the world-wide web [21, 4]. Broder et al
[8] studied the world-wide web from a connectivity point of view
and showed that it has a large strongly connected component. Sev-
eral other studies have also shown that the average diameter of the
web is quite small [8, 3]. Online friendship and email graphs have
been studied in the context of explaining and analyzing friendships
[18] and demonstrating the small-world and navigability properties
of these graphs [23, 9, 1]. For surveys of analysis of large graphs,
the readers are referred to [29, 28, 2, 25, 11, 10, 16].

Many of these above studies were performed on static graphs
whereas most real-world graphs are evolving in nature. In fact,
there are very papers that study the evolution of real-world graphs;
this is partly because of the difficulty in obtaining temporal in-
formation about every node/edge arrival in an evolving real-world
graph. A typical way this problem is addressed is to take snap-
shots of the graph at various points in time and use these snapshots
to make inferences about the evolutionary process. This approach
was used to study the linkage pattern of blogs and the emergence
of bursty communities in the blogspace [19]. Structural properties
of different snapshots of the world-wide web graph was studied by
Fetterly et al and Cho et al [14, 27]. Recently, Leskovec, Kleinberg,
and Faloutsos [22] considered citation graphs and showed that these
exhibit densification and shrinking diameters over time.

A parallel body of work is concerned with developing tractable
mathematical models for massive graphs. Because of their evo-
lutionary nature and their power law degree distributions, these
graphs cannot be modeled by traditional Erdö–Rényi random graphs
[12, 6]. However, there have been a few alternate models that are
more faithful to observed properties. One is the so-called configu-
ration model, which chooses a graph uniformly at random from all
graphs with a prescribed degree distribution [5, 24, 26]; the degree
distribution can be set to match practical observations and is usu-
ally a power law. Another approach is to use a generative model
to describe the evolution of graphs. A typical example is the copy-
ing or the preferential attachment model [20, 4]: nodes arrive one
by one, and link themselves to a pre-existing node with probabil-
ity proportional to the degree of the latter. This “rich get richer”
principle can be analytically shown to induce power-law degree
distributions. Kleinberg [17, 15] proposed a model to explain the
small-world phenomenon and navigability in social networks; see
also [30]. Leskovec et al [22] proposed a forest-fire graph model to
explain the decreasing diameter phenomenon observed in citation
graphs. For a survey of mathematical analysis of some of these
models, the readers are referred to [7, 16].

3. MEASUREMENTS
In this section we detail our study on two online social networks

at Yahoo!. Each social network is presented as a directed time
graph G = (V, E), i.e., every node v ∈ V and directed edge
〈u, v〉 ∈ E in the graph G has an associated time stamp vt and
〈u, v〉t indicating the exact moment when the particular node v or
the edge e became part of the graph [19]. In particular, for any
time t, there is a natural graph Gt that comprises all the nodes and
edges that have arrived up until time t; here we assume that the end
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points of an edge always arrive during or before the edge itself. We
use timegraph to refer to properties that are specific to the evolu-
tion and use graph to refer to the graph GJan2006 as the final graph.
We note that our study of timegraphs is of much finer granularity
than almost all of previous such studies in that we know the exact
moment of each node/edge arrival.

3.1 Datasets
The dataset consists of two online social networks at Yahoo! —

Flickr and Yahoo! 360. Each of these social networks is presented
as a timegraph. For privacy reasons, all the data used in the paper
were provided to us after appropriate anonymization. For confi-
dentiality reasons, we do not specify the exact number of nodes or
edges in these timegraphs but only provide a ball-park estimate —
this will not in any way affect the presentation of our results or the
inferences that can be drawn.

Flickr (www.flickr.com) is an active and popular online photo
sharing and social networking community. Flickr users can upload
and tag photos and share them with their friends or publicly. Each
user in Flickr can invite a new friend to Flickr or can add a pre-
existing Flickr user as a friend. In Jan 2006, the Flickr timegraph
consisted of around one million nodes and around eight million di-
rected edges. The dataset we used had the following anonymized
information about each Flickr user: the time when the user became
a Flickr member and the list of friends he/she has on Flickr, and for
each friend, the time when the user befriended the person. Even
though we had the entire Flickr timegraph available, for our experi-
ments, we focused only on the evolution of the timegraph since the
Flickr website was publicly launched (Feb 2004); this amounted to
about 100 weeks worth of data. We made this decision in order to
avoid the initial phase before the public launch when Flickr usage
was mostly limited to internal users and the user/friendship addi-
tion processes were too skewed to lead to meaningful conclusions.

Yahoo! 360 (360.yahoo.com) is a social networking web-
site that is part of the Yahoo! user network. Users of Yahoo! 360
can add contacts and invite other users to the 360 network. Yahoo!
360 is primarily used to share a blog or photo albums among the
friends of a user. In Jan 2006, the Yahoo! 360 timegraph consisted
of around five million nodes and a around seven million directed
edges. As in Flickr, we used an anonymized timegraph and as be-
fore, chose to discard the initial segment of the timegraph in order
to filter out pre-launch noise/bias. This resulted in about 40 weeks
worth of data.

3.2 Basic timegraph properties
In this section we consider three basic properties of these timegraphs.

The first property we consider is the reciprocity of a directed graph,
that is, the fraction of directed edges 〈u, v〉 such that 〈v, u〉 also ex-
ists in the graph. The goal is to understand:

Are friendships reciprocal in online social networks?
The reciprocity of the Flickr final graph is around 70.2%, and that
of the Yahoo! 360 final graph is around 84%. Thus, friendship
edges are highly mutual. In fact, a finer analysis shows that not
only are many friendship edges reciprocal but in fact many recip-
rocal edges are formed almost simultaneously. Figure 1 shows for
reciprocal edges 〈u, v〉t and 〈v, u〉t′ in the Flickr final graph, the
distribution of |t−t′|, i.e., the delay (in days) of the reciprocity. We
see that an overwhelming fraction of reciprocal edges arrive within
a day of each other. A similar phenomenon is also seen in the Ya-
hoo! 360 final graph. From these observations, we conclude that
for the purposes of analysis and for simplicity of exposition, we can
pretend that the graph is undirected. So, for the remainder of the
paper, we deal only with undirected graphs and treat the Flickr and

Figure 1: Delay (in days) of reciprocity in Flickr final graph.

Yahoo! 360 graphs to be undirected by removing all uni-directional
edges.

Next, we look at the density of these graphs, that is, the ratio
of undirected edges to nodes, of the timegraphs. In a recent work,
Leskovec et al [22] observed that certain citation graphs became
denser over time. We wish to ask a similar question for online
social networks:

How does the density of online social networks behave
over time?

It turns out that the density of social networks as a function of time
is non-monotone. Figure 2 shows the density of the Flickr and
Yahoo! 360 timegraphs. In both the plots there are three clearly

Figure 2: Density of Flickr and Yahoo! 360 timegraphs, by
week.

marked stages: an initial upward trend leading to a peak, followed
by a dip, and the final gradual steady increase. We believe that this
is due to the following social phenomenon. Right after the launch,
there is an initial euphoria among a few enthusiasts who join the
network and frantically invite many of their friends to join; this
gives rise to the first stage that culminates in a peak. The second
stage corresponds to a natural dying-out of this euphoria and this
leads to the dip. The third stage corresponds to true organic growth
of the network (when more and more people know about the net-
work). This growth takes takes over the node/edge creation activ-
ities, slowly overwhelms the dip, and eventually leads to a steady
increase in density. To the best of our knowledge, this phenomenon
has not been observed before in real social networks (again, per-
haps due to the lack of suitable data).

For completeness, we also look at the degree distribution of these
graphs. Figure 3(A) shows the degree distribution of the Flickr final
graph in log-log scale. As expected, it is a power law. The Yahoo!
360 final graph exhibits an almost identical degree distribution. It
is interesting to note the non-monotone shape of this plot for the
first three values of the degree (i.e., degree = 0, 1, 2). This peak oc-
curs because of the “invite” option that is often used in adding new

Research Track Poster

613



www.manaraa.com

Figure 3: (A) Degree distribution in Flickr final graph. The x-
axis is the ranked degree and the y-axis is the number of nodes
at this rank. (B) Component size distribution for Flickr and
Yahoo! 360 final graph.

people to these networks. Typically, many users join via invitation,
and arrive with a single edge already in place. Degree zero nodes
have explicitly joined the network without an invitation, and are a
smaller fraction of the total user base. We will return to this issue
in Section 4.

3.3 Component properties
In this section we study the component structure of the graph in

detail. Our goal is to understand the connectivity structure of the
graph as it evolves over time. In particular, we ask:

What is the dynamics of component formation and evo-
lution in social networks?

We apply a simple connected components algorithm on the time-
graph by considering the instance at every week. The results for
the Flickr and Yahoo! 360 timegraphs are in Figure 4. This plot
shows the fraction of nodes in components of various sizes. The
intervals representing various horizontal bands were chosen so that
the top band represents the largest connected component, which we
will call the giant component, while the bottom band represents the
total number of singleton nodes in the graph, with no links in the
social network at all. The rest of the bands constitute the middle
region, consisting of nodes which exist in small isolated neighbor-
hoods. While there are quantitative differences between the plots
for Flickr and Yahoo! 360, both the plots share two particularly
interesting properties.

1. The fraction of singletons, the fraction of nodes in the gi-
ant component, and fraction of nodes in the middle region remain
almost constant once a steady state has been reached, despite sig-
nificant growth of the social network during the period of steady
component structure. For example, the Flickr social network grew
by a factor of over 13x from the period x = 40 to x = 100 in
the graph, with very little visible change in the fraction of users
who occupied components of a certain size. This steady state cor-
responds to the third stage observed in Figure 2.

2. In the middle region, each band of the diagram appears fairly
constant. In fact, as Figure 3(B) shows, the component size distri-
bution for both datasets follows a power law with exponent -2.74
for the Flickr graph, and -3.60 for Yahoo! 360.

3.4 Structure of the middle region
We now proceed to investigate the formation and structure of the

middle region. Our first question was motivated by the evolutionary
aspect of the timegraph:

How do components merge with each another as nodes
and edges arrive in social networks?

In particular, it was our assumption when we began this experiment
that the non-giant components would grow organically, with a size
three component linking to a size four component to form a new

Figure 4: Fraction of nodes in components of various sizes
within Flickr and Yahoo! 360 timegraph, by week.

1 2 3-4 5-9 10-19 20-449 450+
1 205.1
2 55.9 0.8
3-4 64.2 0.5 0.3
5-9 70.8 0.4 0.3 0.2
10-19 43.9 0.2 0.1 0.1 0.09
20-449 2.6 0.1 0.01 0.07 0.04 0.03
450+ 315.3 11.5 7.1 5.0 2.4 1.0 0

1 2 3 4 5-7 8-149 150+
1 584.3
2 126.1 5.9
3 69.2 2.6 1.2
4 43.6 1.5 0.6 0.4
5-7 66.9 2.3 1.0 0.6 0.9
8-149 72.6 2.3 1.1 0.6 0.9 1.1
150+ 767.3 54.9 22.4 12.2 15.7 13.0 0.1

Table 1: Sizes of components in Flickr and Yahoo! 360
timegraphs when merging, in 1000’s of nodes.

component of size 7, and so forth. Table 1 shows how component
merges happen in both Flickr and Yahoo! 360 timegraphs. The
(i, j)-th entry of this symmetric table gives the number of times
during the evolution of the timegraph that a component of size i
merges with a component of size j.

Strikingly, almost all the mass in this table is in the bottom row
and the left column, implying that the component merges are of
primarily two types: singletons merging with the current non-giant
components and the giant component, and non-giant components,
including singletons, merging with the giant component.
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That is, it is surprisingly rare during the evolution of the time-
graph that two non-giant components merge to produce another
non-giant component.

Our next goal is to understand the consequences of this observed
phenomenon and its impact on the structure of the middle region.
Indeed, if most of the component merges are characterized by the
above two types, it is natural to speculate that this is caused by some
special node in the non-giant component that serves to “attract” the
incoming singleton. Notice that if this were to happen, it would
lead to many middle region stars, that is, components with a center
of high degree and many low-degree nodes connected to the center.
We ask:

Do the components in the middle region have any spe-
cial structure, and in particular, are they stars?

First, to be able to observe this phenomenon, we need a rea-
sonably robust definition of what a star is. We define a star to be
connected component with the following two properties: it has one
or two nodes (centers) that have an edge to most of the other nodes
in the component and it contains a relatively large number of nodes
that have an edge solely to one of these centers. More formally, let
U be the nodes in a connected component that is not the giant com-
ponent. Trivially, U is a star if |U | = 2. Otherwise, let C ⊆ U be
the set of nodes with degree more than |U |/2 and let T ⊆ U be the
set of nodes with degree equal to one. For a parameter k ∈ (0, 1),
we define U to be a star if |C| ∈ {1, 2} and |T |/|U \ C| > k; we
call C the centers of the star and |T | the twinkles. In our experi-
ments, we set k = 0.6 in the above definition.

Based on this definition of a star, we analyze the final graphs
of both Flickr and Yahoo! 360. In the Flickr final graph, 92.8%
of the middle region was composed of stars; in total there were
69,532 centers and 222,564 twinkles. In the Yahoo! 360 final
graph, 88.7% of the middle region was composed of stars; there
were 147,071 centers and 264,971 twinkles. Thus, there is an over-
whelming number of stars in the middle region, validating our hy-
pothesis that each component in the middle region has a center and
the singleton node joins the center to become a twinkle. We will
make heavy use of this characterization in order to develop a gen-
erative model which produces an appropriate middle region.

In fact, our hypothesis is further strengthened when we examine
this process more closely. Call a star non-trivial if it has more
than two nodes and let u be the center of a non-trivial star. Figure
5(A) shows the distribution of the time lag between first twinkle
u and the last twinkle u′ to join the star, i.e., the distribution of
t′−t (in weeks) where 〈u, v〉t is the edge that adds the first twinkle
and 〈u′, v〉t′ is the edge that adds the last twinkle. As we see, the

Figure 5: (A) Distribution of time lag (in weeks) between the
first and last twinkle addition to non-trivial stars in the Flickr
final graph. (B) Age of non-trivial stars in the Flickr final
graph.

distribution is sharply decreasing, suggesting that stars are formed
rather quickly. We next analyze the age of stars, which is the time
since the last edge arrival in the star. Figure 5(B) shows the age

of stars in the Flickr final graph. Again, a large fraction of stars
are more than 10 weeks old. This suggests that the middle section
consists of stars that are formed quickly but have not been absorbed
into the giant component yet.

Similar results were also observed for Yahoo! 360 final graph.
For sake of brevity, we do not present these results.

3.5 Structure of the giant component
In this section we analyze the structure of the giant component.

The most natural question to ask is:
How does the diameter of the social network behave
as a function of time?

We study the diameter of the giant component. Formally, the di-
ameter is the maximum over all pairs in the giant component of
the shortest path connecting the pair. This measure is not robust in
general, as a single long path in the component could result in an
enormous diameter. Thus, we turn instead to the average diameter,
which is defined as the length of the shortest path between a ran-
dom pair of nodes. For comparison, we also consider the effective
diameter, which is defined as the 90-th percentile of the shortest
path lengths between all pairs of nodes; this quantity was used in
[22]. We estimate both these quantities by sampling sufficiently
many pairs of nodes in the giant component uniformly at random.

For the giant component in the Flickr final graph, we compute
the average diameter to be 6.01 and the effective diameter to be
7.61. For the giant component in the Yahoo! 360 final graph, the
corresponding values are 8.26 and 10.47 respectively. Notice that
these are slightly higher values than the one suggested by the “six-
degrees of separation” folklore. Figure 6 shows diameter as a func-
tion of time in the Flickr and Yahoo! 360 timegraphs. The shape of
this curve has high correlation with that of density over time, which
exhibited three distinct stages in the evolution of the timegraph. We
note that the three stages in Figure 6 exactly correspond to the three
stages in Figure 2. In the first stage, the diameter is almost flat. In
the next stage, where the edge density drops, the diameter grows till
it reaches a peak. In the third stage, when the edge density starts
increasing, the diameter starts decreasing.

A similar phenomenon of shrinking diameter was recently ob-
served by Leskovec et al [22] in citation graphs. Our study shows
that diameter shrinking happens in social networks as well. Again,
to the best of our knowledge, this is the first instance of such an
observation for online social networks. Well-known models of net-
work growth based on preferential attachment [20, 4] do not have
this property (see [7] for details).

Figure 6: Average and effective diameter of the giant compo-
nent of Flickr and Yahoo! 360 timegraphs, by week.

We then investigate the structure to see if we can explain the
diameter values that were observed. In particular, we ask:

Does the giant component have a reasonably small core
of nodes with high connectivity?

By computing the degree distribution of the nodes in the giant com-
ponent, we observe that in the Flickr final graph, about 59.7% of
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the nodes in the giant component have degree 1. The corresponding
number for the Yahoo! 360 final graph was 50.4%. These degree 1
nodes therefore contribute to the increase in diameter values. Sup-
pose we discard these degree 1 nodes in the giant component and
analyze the remaining core. For the core of the Flickr final graph,
the average diameter is 4.45 and the effective diameter is 5.58. For
the core of the Yahoo! 360 final graph, the corresponding numbers
are 6.52 and 7.95 respectively. This suggests that there is a small
core inside the giant component of extremely high connectivity.

Stars are the dominant explanation of the structure outside the
giant component. Given the presence of this small core of well-
connected nodes, one might naturally ask the following question:

Are stars merging into the giant component also re-
sponsible for the highly-connected core of the giant
component?

We identify all stars throughout the life of the time graph, and track
them as they merge into the giant component. Based on this track-
ing, we remove all star centers, and both the original twinkles be-
longing to that star, and all new degree-1 nodes connected to that
star, and ask whether any fragmentation results. In fact, the giant
component remains extremely well connected.

Thus, we conclude that the stars represent the primary form of
structure outside the giant component, but represent only a thin
layer of structure at the outside of the giant component. The true
characteristic of the giant component is the well-connected core at
the center. Later we will discuss some possible implications of this
observation.

4. MODEL
In this section we present a model of the evolution of online so-

cial networks. Our goal in developing this model is to explain the
key aspects of network growth in as simple a manner as possible,
obviating the need for more complex behavioral explanations.

The properties we will seek to reproduce are the following.
Component structure. The model should produce an evolving com-
ponent structure similar to that of Figure 4. The fraction of users
who are singletons, those in the middle region, and those in the
giant component should reflect the underlying data. The non-giant
component of each size should capture a fraction of the users which
matches the empirical observations and should analytically match
the observed power law.
Star structure. The non-giant components should be predominantly
star-like. Their growth rates should match the growth of the actual
data.
Giant component structure. The nodes making up the giant com-
ponent should display a densely-connected core and a large set of
singleton hangers-on, and the relationship between these regions
should explain the average distance of the giant component.

4.1 Description of the model
Our model is generative, and informally proceeds as follows.

There are three types of users: passive, linkers, and inviters. Pas-
sive users join the network out of curiosity or at the insistence of
a friend, but never engage in any significant activity. Inviters are
interested in migrating an offline community into an online social
network, and actively recruit their friends to participate. Linkers
are full participants in the growth of the online social network, and
actively connect themselves to other members.

At each timestep, a node arrives, and is determined at birth to be
passive, linker, or inviter according to a coin toss. During the same
timestep, ε edges arrive and the following happens for each edge.
The source of the edge is chosen at random from the existing in-
viters and linkers in the network using preferential attachment; that

is, the probability that a particular node is chosen is proportional
to its degree plus a constant. If the source is an inviter, then it in-
vites a non-member to join the network, and so the destination is a
new node. If the source is a linker, then the destination is chosen
from among the existing linkers and inviters, again using preferen-
tial attachment. The parameters controlling the model are shown
below.

Description of the parameter
p User type distribution (passive, inviter, linker)
γ Preference for giant component over the middle region
ε Edges per timestep

More formally, the model proceeds as follows. We incremen-
tally build a timegraph G = (V, E). At any point in time, let the
set of passives, inviters, and linkers be denoted by P, I , and L re-
spectively, such that V = P ∪ I ∪ L. Let d(u) denote the degree
of node u.

At each timestep, a new node arrives, and is assigned to P , I , or
L according to the probabilities in p. Let β > 0 be a parameter.
We will define probability distribution Dβ over V representing the
probability of selecting a node u via a biased preferential attach-
ment, as follows:

Dβ(u) ∝

8<: β · (d(u) + 1) u ∈ L
d(u) + 1 u ∈ I
0 otherwise

Then ε undirected edges arrive, as follows. For each edge (u, v),
u is chosen from D0, where the bias parameter is set to 0. If u
is an inviter, then v is a new node, assigned to P . If u is a linker
then v is chosen from Dγ . Notice that the initiator of a link is
chosen from all non-passive nodes based only on degree. However,
once a linker decides to generate a node internal to the existing
network, the destination of that node is biased towards other linkers
by γ. This reflects the fact that the middle region is more difficult
to discover when navigating a social network.

4.2 Simulations
We now evaluate the model with respect to the three families of

conditions we hope it will fulfill. We choose suitable parameters for
our model and simulate the model. We then examine the properties
of the graph created by our model and see how closely it matches
that of Flickr and Yahoo! 360 timegraphs. The following table
shows the appropriate parameter choices.

p γ ε
Flickr (0.25, .35, .4) 15 6
Yahoo! 360 (.68, .22, .1) 2 1

We refer to the graphs generated by simulation as Flickr.model
and 360.model. We start with the component structure of these sim-
ulations and compare them against the actual data. The following
table shows the exact match of the fraction of nodes in each of the
three main regions.

Data Singletons Middle Giant
region component

Flickr .2 .33 .47
Flickr.model .20 .33 .47
360 .66 .9 .25
360.model .66 .9 .25

We now refine the middle region further and compare the simu-
lated versus the actual data.

1 2 3-4 5-9 10-19 20-449 ≥ 450
Flickr .2 .07 .07 .08 .06 .05 .47
Flickr.model .2 .06 .08 .08 .06 .03 .47
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1 2 3 4-6 7-149 ≥ 150
360 .66 .038 .016 .02 .016 .25
360.model .66 .04 .02 .02 .01 .25

From our simulation, we see that in terms of components and the
structure of the middle region, our model can accurately capture the
properties of Flickr and Yahoo! 360 graphs, when the parameters
are well-chosen.

5. DISCUSSION AND FUTURE WORK
There are several key takeaway points from our experiments.

The first is that online social networks often contain more than half
their mass outside the giant component, and the structure outside
the giant component is largely characterized by stars. The creation
of stars is largely a result of the dynamics of invitation, in which
many people are invited to the social network, but only a small
fraction choose to engage more deeply than simply responding to
an invitation from a friend.

The second key takeaway is that online social networks appears
to travel through distinct stages of growth, characterized by spe-
cific behavior in terms of density, diameter, and regularity of com-
ponent structure. We have observed these changes by studying the
time graphs of two very different social networks, but we do not yet
have a more detailed characterization of the root cause for this pro-
gression. It would be attractive to develop a more detailed theory
of the adolescence of a social network.

Third, Figure 4 shows a surprising macroscopic component struc-
ture in which the total mass of individuals is well spread across a
broad range of sizes of isolated communities (or from a graph the-
oretic perspective, smaller components). We feel that a deeper un-
derstanding of the behavior of “middle band” activity versus “core”
activity may reveal that the dichotomy is a meaningful reflection of
two active by very different types of participants.

Finally, we have presented a simple model which is surprisingly
accurate in its ability to capture component growth. It will be in-
teresting to do a more detailed analysis of the model to show that it
also predicts diameter of the giant component, in addition to struc-
ture of the middle region. Similarly, the model itself is optimized to
be the simplest possible approach to reproducing particular aspects
of social network structure rather than a detailed model built from
the data in order to provide predictive power. Nonetheless, it is in-
teresting to ask whether the best fitting model parameters may be
taken as descriptive of the social network in any sense. For exam-
ple, in the model, Yahoo! 360 displays a smaller relative fraction of
active members, compared to the Flickr community, but at the same
time offers fewer barriers to discovering isolated sub-communities
and incorporating them into the giant component. Is this represen-
tative of the underlying reality?

6. CONCLUSIONS
In this paper we studied the structure and evolution of two pop-

ular online social networks, namely Flickr and Yahoo! 360. Our
study analyzes these graphs from an evolutionary point of view,
by keeping track the precise moments when each node and edge
arrives in the graph. We show that these quantitatively different
graphs share many qualitative properties in common. In particular,
we analyzed the structure and evolution of different-sized compo-
nents and showed the prevalence of “stars”, an intriguing feature of
online social networks. Based on these empirical observations, we
postulated a very simple evolving graph model for social networks
and showed by simulation that this model faithfully reflects the ob-
served characteristics. Since our model is fairly simple, we believe
it is amenable to mathematical analyses.

Our work raises a number of questions about the behavioral char-
acteristics of the users who contribute to these various different net-
work regions.
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